Math 245C Lecture 26 Notes

Daniel Raban

May 31, 2019

1 Introduction to Sobolev Spaces

1.1 Sobolev spaces and uniqueness of distributional derivatives

Throughout this section, $\Omega \subseteq \mathbb{R}^d$ is a nonempty, open set.

Proposition 1.1. Let $f \in L^1_{loc}(\Omega)$ be such that $\int_{\Omega} f \phi \, dx = 0$ for all $\phi \in C^{\infty}_c(\Omega)$. Then $f \equiv 0$ a.e.

Proof. Let $\rho \in C_c^{\infty}(\mathbb{R}^d)$ be such that $\rho \geq 0$, $\int_{\mathbb{R}^d} \rho \, dx = 1$, and $\operatorname{supp}(\rho) = B_1(0)$. Set $\rho_{\varepsilon}(x) = \varepsilon^{-d} \rho(x/\varepsilon)$. Let $x \in U$, and let $0\varepsilon_0 < \operatorname{dist}(x, \partial\Omega)$. Then

$$\rho_{\varepsilon} * f(x) = \int_{B_{\varepsilon}(x)} \rho_{\varepsilon}(x-y) f(y) \, dy = 0, \qquad 0 < \varepsilon < \varepsilon_0.$$

Thus, for almost every x,

$$0 = f(x) = \lim_{\varepsilon \to 0} \rho_{\varepsilon} * f(x).$$

Definition 1.1. Let $1 \le p \le \infty$, and let $m \in \mathbb{N}$. We say that $f \in W^{p,m}_{\text{loc}}(\Omega)$ if $f \in L^p_{\text{loc}}(\Omega)$ and if for every multi-index $\alpha \in \mathbb{N}^n$ such that $|\alpha| \le m$, there exists $g_\alpha \in L^p_{\text{loc}}(\Omega)$ such that

$$\int_{\Omega} f \partial^{\alpha} \phi \, dx = (-1)^{|\alpha|} \int_{\Omega} g_{\alpha} \phi \, dx \qquad \forall \phi \in C_{c}^{\infty}(\Omega).$$

In other words, the distributional derivative $\partial^{\alpha} f \in L^{p}_{loc}$. When $f \in L^{p}(\Omega)$ and $g_{\alpha} \in L^{p}(\Omega)$ for $|\alpha| \leq m$, we write $f \in W^{m,p}(\Omega)$.

Remark 1.1. Thanks to the previous proposition, when g_{α} exists, it is uniquely determined a.e.

1.2 Translation of distributions

Notation: Let $\phi \in C_c^{\infty}(\Omega)$, and let $y \in \mathbb{R}^d$. We set $\phi_y(x) = \phi(x-y) = (\tau_y \phi)(x)$. Note that $\operatorname{supp}(\varphi_y) = \operatorname{supp}(\phi) + y$. Set

$$O_{\phi} = \{ y \in \mathbb{R}^d : y + \operatorname{supp}(\phi) \subseteq \Omega \} = \{ y \in \mathbb{R}^d : \operatorname{supp}(\phi_y) \subseteq \Omega \}.$$

Proposition 1.2. O_{ϕ} is open and nonempty.

Proof. Let $y \in O_{\phi}$, and set $\delta = \operatorname{dist}(y + \operatorname{supp}(\phi), \Omega^c) > 0$. If $y \in O_{\phi}$, then $B_{\delta/2}(y) \subseteq O_{\phi}$. Hence, O_{ϕ} is open. $O_{\phi} \neq \emptyset$ because $0 \in O_{\phi}$.

Proposition 1.3. If $T \in \mathcal{D}'(\Omega)$, $y \mapsto T(\phi_y)$ is continuous.

Proof. Let $(y_n)_n \subseteq O_{\phi}$ be a sequence converging to y. We are to show that $\lim_n T(\phi_{y_n}) = T(\phi_y)$. Note that

$$\phi_{y_n}(x) = \phi(x - y_n) = \phi(x - y) - \int_0^1 \nabla \phi(x - y + t(y_n - y)) \cdot (y_n - y) \, dt.$$

This gives us that $(\phi_{y_n})_n$ converges to ϕ_y in C_c^{∞} . Indeed,

$$|\partial^{\alpha}\phi_{y-N} - \partial^{\alpha}\phi_{y}| \le \|\nabla\partial^{\alpha}\phi\|_{\infty}\|y_{n} - y\|$$

Since T is continuous, we conclude that

$$\lim_{n} T(\phi_{y_n}) = T(\phi_y).$$

Theorem 1.1. Let $\phi \in C_c^{\infty}(\Omega)$, and let $T \in \mathcal{D}'(\Omega)$. Set $f(y) = T(\phi_y)$ for $y \in O_{\phi}$.

1. $f \in C^{\infty}(O_{\phi})$, and

$$D^{\alpha}f(y) = (-1)^{|\alpha|}T((D^{\alpha}\phi)_y)$$

2. If $\psi \in L^1(O_{\phi})$ has compact support, then

$$T(\psi * \phi) = \int_{O_{\phi}} \psi(y) f(y) \, dy$$

Proof. One proves by induction on α that $\partial^{\alpha} f$ exists, is continuous, and satisfies the equation. Assume $|\alpha| = 1$. Let e_1, \ldots, e_d be the standard basis of \mathbb{R}^n . We have for $t \in \mathbb{R}$

$$\phi_{y+te_i}(x) = \phi(x-y-te_i) = \phi(x-y) - \int_0^1 \partial_i \phi(x-y-t\tau e_i) \, d\tau.$$

Hence,

$$\frac{\phi_{y+te_i}(x) - \phi_y(x)}{t} = -\int_0^1 \partial_i \phi(x - y - t\tau e_i) \, d\tau.$$

In fact, we have

$$\frac{\partial^{\alpha}\phi_{y+te_i}(x) - \partial^{\alpha}\phi_y(x)}{t} = -\int_0^1 [\partial^{\alpha}\partial_i\phi(x-y-t\tau e_i) - \partial^{\alpha}\partial_i\phi(x-y)]\,d\tau - \partial^{\alpha}\partial_i\phi(x-y).$$

This shows that

$$\frac{\phi_y + te_u - \phi_y}{t}(x) \to -\partial_i \phi(x - y)$$

pointwise and in $C_c^{\infty}(\Omega)$. Hence,

$$\lim_{t \to 0} \frac{f(y + te_i) - f(y)}{t} = \lim_{t \to 0} \frac{T(\phi_y + te_i) - T(\phi_y)}{t} = \lim_{t \to \infty} T\left(\frac{\phi_{y + te_i} - \phi_y}{t}\right) = T(-(\partial \phi(x))_y).$$

Since $\partial_i \phi \in C_c^{\infty}(\Omega)$, by the previous proposition, $y \to T((\partial_i \phi)_y)$ is continuous. In conclusion, f is continuously differentiable, and $\nabla d(y) = -T((\nabla \phi)_y)$. This concludes the proof of the first statement when $|\alpha| = 1$. By induction, we obtain the result for all α . \Box

We will prove the second statement next time.